Oberstufe
A.53.04 | homogene Differentialgleichung, konstante Koeffizienten
Bei einer homogenen DGL höherer Ordnung sind die Lösungen des charakteristischen Polynoms entscheidend. Das charakteristische Polynom erhält man, in dem man in der DGL f' durch x ersetzt, f'' durch x^2, f''' durch x^3, usw. Diese Gleichung löst man (oft nicht einfach) und betrachtet die Lösungen. Der Lösungsansatz hängt von zwei Faktoren ab: 1. ist die Lösung des charakteristischen Polynoms reell oder komplex? und 2. ist die Lösung einfach, doppelt, dreifach...