Oberstufe

W.17 | hypergeometrische Verteilung (Ziehen ohne Zurücklegen)

Beim Ziehen ohne Zurücklegen kann man meistens die sogenannte hypergeometrische Verteilung verwenden. Voraussetzung ist, dass man genau weiß, aus welcher Anzahl sich die einzelnen Gruppen zusammensetzen und wieviel Stück man aus jeder der vorhandenen Untergruppen ziehen will. (Standardbeispiel: In einer Urne sind viele Kugeln in mehreren Farben. Man muss genau wissen, wieviel von jeder Farbe vorhanden ist und man muss genau wissen, wieviel Kugeln von jeder Farbe gezogen werden soll.) Die Formel setzt sich nur aus mehreren Binomialkoeffizienten zusammen. Standardbeispiele sind: Kugeln verschiedener Farben aus einer Urne entnehmen und Lotto.

 

Die hypergeometrische Verteilung wendet man an, wenn es um Ziehen ohne Zurücklegen geht. Wenn man mehrere Gruppen hat und aus jeder dieser Gruppe soll eine bestimmte Anzahl von Elementen entnommen werden. Den Namen „hypergeometrische Verteilung“ müssen Sie nicht kennen, aber die Vorgehenweise lohnt sich zu merken. Da man die Berechnung der Lotto-Wahrscheinlichkeit mit ebenfalls dieser Theorie durchführt, ist hierfür auch der Name „Lotto-Problem“ gängig. 

Beispiel a.

In einem Korb befinden sich 8 Äpfel und 4 Birnen. Ella entnimmt 5 Früchte. Wenn die Entnahme zufällig erfolgt, mit welcher W.S. sind genau 3 Äpfel und 2 Birnen
dabei? 

Lösung [kurz, ohne viel Erläuterungen]: 

Es gibt zwei Gruppen, aus jeder Gruppe werden ein paar Elemente [ohne Zurücklegen] entnommen. Damit haben wir es hier mit der hypergeometrischen Verteilung zu tun.
Wir ziehen 3 Äpfel aus der Gruppe der 8 Äpfel und wir ziehen 2 Birnen aus der Gruppe der 4 Birnen. Insgesamt ziehen wir 5 Früchte aus der Gruppe der insgesamt 12 Früchte. Damit erfolgt die Berechnung der W.S. über drei Binomialkoeffizienten.

 

Beispiel b.

Aus einer Klasse mit 12 Mädels und 9 Jungs, wird ein sechsköpfiger Ausschuss gewählt. Wie groß ist die Wahrscheinlichkeit, dass der Ausschuss genau zur Hälfte aus Jungs besteht ?

Lösung [mit Erläuterungen]:

Die Definition der WS. lautet ja: 

Die Anzahl der günstigen Möglichkeiten, ist bei uns die Anzahl der Möglichkeiten einen 6-köpfigen Ausschuss zu bilden, der aus 3 Jungs und 3 Mädels besteht. Das sind   [siehe Kapitel W.12.02].

Die Gesamtanzahl aller Möglichkeiten einen 6-köpfigen Ausschuss zu bilden ist 

 

Beispiel c.

In einer Urne befinden sich 8 rote, 11 blaue und 9 grüne Kugeln. Es werden 6 Kugeln mit einem Griff gezogen. Wie hoch ist die WS., dass genau eine rote, zwei blaue und drei grüne dabei sind? 

Lösung:

 

Beispiel d.

In einer 40-er Packung mit roten, grünen, orangen und gelben Frucht-Krachern sind alle Farben gleich häufig vertreten. Nun werden 12 von den Teilen gezogen. Wie hoch ist die WS. auch wieder gleich viele von jeder Farbe zu ziehen? 

Lösung:

Wir ziehen 3 aus der Gruppe der 10 roten, 3 aus der Gruppe der 10 grünen, 3 aus den 10 orangen und 3 aus den 10 gelben. Insgesamt kann man 12 aus 40 ziehen. Das ergibt eine WS. von:

 

Beispiel e.

Lotto: Wie hoch ist die WS. vier Richtige zu tippen ?

Lösung:

Zuerst muss man selber auf die Idee kommen, die 49 Zahlen in zwei Gruppen aufzuteilen. Die 6, die sich bei der Ziehung als Richtige erweisen werden und die 43, die sich bei der Ziehung als Falsche erweisen werden.
Nun ist es einfach: Wir ziehen 4 aus der Gruppe der 6 Richtigen und 2 aus der Gruppe der 43 Falschen. Insgesamt ziehen wir 6 aus 49.

Die Wahrscheinlichkeit ist 1:1.000. Möchten Sie immer noch Lotto spielen?